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SYNOPSIS 

The yield stress of amorphous glassy polymers depends strongly on the strain rate, tem- 
perature, and hydrostatic pressure. On the other hand, the yield criteria, valid for metals, 
do not describe this behavior. Therefore, the yield phenomenon of the polymeric glassy 
state must be mainly a nonlinear viscoelastic effect. In this work, an analysis based on the 
concept of activation volume tensor, described elsewhere, and using fundamental equations 
of nonlinear viscoelasticity, is presented. It has been confirmed that this consideration 
leads to a satisfactory description of the postyield behavior, including strain softening and 
strain hardening. The strain rate and temperature effect have also been modeled for various 
rates and temperatures. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Amorphous glassy polymers under constant rate 
straining exhibit nonlinear viscoelastic behavior 
such as yielding and cold flow. The yield and pos- 
tyield behavior appears to have some distinct char- 
acteristics, namely, an initial stress peak (depending 
on pressure, thermal prehistory, strain rate, and 
temperature), followed by a stress softening due to 
inhomogeneous deformation. As the strain becomes 
higher, the configurational entropy of the system 
changes because of the molecular alignment and the 
material exhibits strain hardening. As has been re- 
ported,’ the time and temperature dependence of 
the yield point in polymers has been explained 
mainly by two distinct classes of theory. The mech- 
anisms related to these two classes have been termed 
“nucleation”-controlled2 and “velocity”-con- 
trolled?** 

The yield point of glassy polymers has been con- 
sidered as the point where plastic flow begins. For 
the description of this mechanism, the Eyrin2 
equation has been applied to describe the viscosity 
of a fluid. However, in Roetling analysis: it has been 
suggested that the Eyring equation was not appli- 
cable to the yielding of glassy polymers, while a two- 
stage process is proposed using the Ree-Eyring 
e q ~ a t i o n . ~  Moreover, Bauwens et a1.8 concluded that 
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in the Tg region, where yielding behavior is more 
complicated than in the glassy state, the Eyring- 
type mechanism must be of little use. 

On the other hand, the question whether a struc- 
tural change occurs a t  the yield point has been the 
subject of many works. Robertson’ proposed that 
the glassy structure changes to liquidlike at the yield 
point. 

In a work of Ngai et al.,1° constitutive equations 
based on the nonlinear viscoelasticity were devel- 
oped with the use of a coupling model. Contrary to 
these considerations, where a homogeneous change 
of the polymeric structure is assumed, Lefebvre and 
Escaig’l*12 studied the contribution of nucleation of 
molecular defects to the plastic strain and proposed 
the inhomogeneous structural change during yield- 
ing. Physical explanations for changes in the defor- 
mation regime have also been provided by Perez 
et al.13 

For the complete description of the strain-soft- 
ening and strain-hardening effects, in a uniaxial 
state of deformation, Haward and Thackray14 used 
an Eyring dashpot for the intermolecular resistance 
connected with a Langevin spring to express the 
strain hardening. 

The mechanisms of inelastic deformation of 
glassy materials under monotonically rising stress 
were discussed by Argon15 and linked to the structure 
of the materials studied. Argon“ also introduced a 
micromechanical model to describe the intermolec- 
ular resistance to segment rotation and attributed 
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the strain hardening to the subsequent molecular 
alignment. 

Later, this work was extended by Parks et al.17 
and by Boyce et a1.18 for three-dimensional states of 
deformation, where also the effects of deformation 
rate, pressure, and temperature were included for a 
realistic simulation of the entire process. 

The effect of pressure on the shear yield stress of 
a polymer can be very well represented by the equa- 
tion 

where T is the shear yield stress a t  pressure p; T ~ ,  

the shear yield stress a t  atmospheric pressure; and 
a, the coefficient of increase of shear yield stress 
with hydrostatic pressure, equivalent to the friction 
coefficient p. 

The correlation between shear yielding and sec- 
ondary relaxations were also examined.lg It was 
found that the activation of cooperative secondary 
relaxation at  the temperature and time scale of the 
experiment is necessary for yield to occur. 

In a series of recent works by Chow,20~21 the pre- 
diction of the yield behavior was based on the con- 
cept of the local configurational rearrangements of 
the molecular segments, which result in different 
domain sizes due to the application of different stress 
fields. By combining this fact with the effect of an 
external stress on the viscoelastic relaxation, Chowz1 
calculated the external work done by aii acting on 
the hole cell during yielding, using the concept of 
the activation volume tensor. This quantity strongly 
affects the relaxation time, having an important role 
in nonlinear viscoelasticity. However, by this treat- 
ment only, the strain softening after the stress peak 
at  yielding can be described. 

In this work, following the analysis developed by 
Chow," an attempt was made to predict the pos- 
tyield behavior of glassy polymers, i.e., strain soft- 
ening and strain hardening. A stress back tensor 
was introduced analogous to that proposed else- 
where." In all cases, comparison with experimental 
data of the literature was made. 

VISCOELASTIC MODEL FOR YIELD 
BEHAVIOR 

According to the Chow analysis, the work done by 
uii on a hole cell during yielding is 

where aii and oc are the stress and activation volume 
components respectively, while the ratio ( wii/  f ) ex- 
presses the volume of the polymer segment needed 
to move as a whole for plastic yield to occur. The 
relaxation time is then equal to 

T = Toexp [ - 27bWRTI (3 )  

where 7 0  is the preexponential factor and is analo- 
gous to the quantity 

7 0  = A-'exp[ - L] E 

bf;RT ( 4 )  

with A being a constant, analogous to T ; ~  

X exp [ E  / b f ,RT]  , where E is the thermal activation 
energy for the hole transition equal to 2.51 kcal/ 
mol; f,, equal to 0.0336; T , ,  a reference relaxation 
time; R ,  the gas constant; and T, the temperature, 
and b expresses the shape of the relaxation spectrum. 

Following the ideas of E ~ r i n g , ~  yielding occurs 
when the product of relaxation time and the applied 
strain rate is constant: 

CT = constant ( 5 )  

On the other hand, the relaxation modulus of glassy 
polymers may be given by the well-known Kohl- 
rausch-Williams-Watts ( KWW) equation: 

where E& is the unrelaxed modulus, 7 is the relax- 
ation time, and b expresses the broadening of the 
distribution of relaxation times. 

By taking into account that stress and strain are 
related by 

x exp 

(7) 
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where ek l  is the rate of deformation, and KH,  the 
slope of the plot of the yield stress vs. logarithmic 
strain rate. 

Considering eqs. (3 )  and (5 ) , this plot is a straight 
line for a wide range of strain rates, in a similar way 
as in the Eyring analysis. By this approach, however, 
only the strain softening can be predicted, as was 
described by Chow.21 

In an attempt to describe the strain hardening 
that follows strain softening for many types of 
amorphous glassy polymers, it was taken into ac- 
count that after stress overshooting a molecular 
alignment occurs. This effect leads to the change of 
the configurational entropy of the system. For the 
material to overcome this type of resistance, an in- 
ternal variable is introduced, namely, the back stress 
tensor Bij, similar to that proposed by Haward and 
Thackray,14 and which was extended by Parks et 
al.17 for 3-D problems. 

By assuming that the free-energy change due to 
intra- and intermolecular changes is negligible com- 
pared to the change of the configurational entropy, 
which is large due to the orienting of chains,” the 
back stress tensor was related to the entropy change. 
Following this assumption, the entropic resistance 
defined in the stretched material above Tg represents 
an internal resistance “locked” in the material be- 
low Tg. 

This variable, Bij, for the description of the ori- 
entation hardening is defined by a non-Gaussian 
statistical mechanics theory of rubber elasticity as 
reported by Treloar.22 In eq. (8), the stress u of the 
second part of eq. (8) is replaced with the difference 
uij - Bij, where uij is the Gauchy stress and the back 
stress Bij is expressed by the following relation: 

where X i  is the stretch ratio; Xi ,  the stretch ratio in 
the other principal direction, calculated with the as- 
sumption of the isovolume deformation during 
yielding, and T, the temperature. CR is the rubbery 
modulus, equal to nkT, n being the number of chains 
per unit volume, k, the Boltzmann constant, and 
L-’ is the inverse Langevin approximation. N is the 
number of rigid chain links between entanglements. 

The numerical evaluation of eq. (8) was made by 
replacing time (which is equivalent to the defor- 
mation e, due to the constant strain rate) with the 
reduced time 4, defined by hop kin^^^: 

where t is time; 7,  the relaxation time; and T,, the 
relaxation time at some reference state. Generally, 
4 is the time required for the material to relax at a 
reference state of deformation, to the same extent 
that occurs in time t at a specific deformation state. 

To check the validity of the above-mentioned 
analysis, experimental results found in the bibli- 
ography, carried out by Hope et a1.,24,25 were used. 
These experimental data concern true stress-strain 
plots for PMMA at 90°C for various rates of defor- 
mation, namely, loo, lo-’, and s-l 
(see Fig. 1). 

From these results, the yield stress vs. logarithmic 
rate of deformation was obtained in Figure 2. The 
slope of this straight line corresponds to the mag- 
nitude of KH of eq. (8) and was found to be equal to 
3.13 Mpa. Following eqs. (3) and (5), Kkl is propor- 
tional to the quantity fbRT/ukl, and in that way, it 
was possible to have an estimation of the activation 
volume, which was found to be 50 A3. This fact im- 
plies that the volume of molecular segments needed 
to move as a whole at yielding is higher than the 
volume at a single lattice site (equal to 19 A3). This 
is evidence of the cooperative nature of yielding in 
the amorphous glassy state. The concept of coop- 
eration has also been extensively discussed else- 
where.26 
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Figure 1 Experimental stress-strain curves of PMMA 
at 90°C, at three different strain rates, taken from 
Ref. 25. 
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Figure 2 
rate for PMMA at 90°C (data from Fig. 1).  

The yield stress plotted vs. logarithmic strain 

Combiningeqs. (3), (4), (8), (9), and (lo), the yield 
and postyield behavior of PMMA could be described 
as shown in Figure 3, where the validity of this ap- 
proach is tested for three different strain rates from 
the data of Figure 1. Parameter N is equal to the 
square of terminal stretch ratio A, which can be ap- 
proximately estimated from the experimental data 
of Figure 1, as mentioned by Boyce et a1.18 The value 
of N was found to be equal to 9, while the value of 
the reference relaxation time T,  was of the order of 

Constant C R ,  which is the rubbery modulus of 
PMMA at 90°C, was fitted from the experimental 
results equal to 10 MPa. Therefore, n, the number 
of chains per unit volume, was equal to 19.9 X loz6 
(mP3). The best approximation was made for a value 
of b equal to 1. In this way, it is confirmed that the 
distribution of relaxation times becomes quite nar- 
row as the temperature is increased, approaching 
the equilibrium state. 

As obvious from the above analysis, temperature 
affects both the relaxation time as it is defined by 
eq. (3) and the intermolecular resistance through 
eq. (9), given that CR is equal to nkT. To study the 
flexibility of this viscoelastic analysis to describe also 
the temperature effect on yielding, the above-men- 
tioned experimental data were used. These tensile 
true stress-strain curves concern PMMA at  three 
different temperatures, 50, 70, and 90°C, at a con- 
stant strain rate of 0.005 s-'. 

By taking into account the fact that the rubbery 
modulus CR increases with increasing temperature, 
slightly changing it for the three different temper- 
atures, keeping the set of the other parameters con- 
stant, as mentioned above, a satisfactory fitting was 
made and is presented in Figure 4. For temperatures 
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Figure 3 Stress-strain curves of PMMA at 90°C with 
varying the rate of deformation. Solid line represents the 
data of Figure 1. Points are obtained using eq. (8). 

90 and 70°C, the temperature effect is well modeled. 
At the lowest temperature of 50°C, an almost slight 
deviation at  the strain softening and strain hard- 
ening is observed, exhibiting this way possible lim- 
itations of this description at  temperatures far from 
Tg. From the above analysis, it is implied that the 
scaling of the yield behavior can be successfully made 
for a wide temperature range, without a further 
change of parameter values. 
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Figure 4 Stress-strain curves of PMMA at three dif- 
ferent temperatures, with a constant strain rate of 0.005 
s-l (Ref. 24). Points are obtained using eq. (8). 
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CONCLUSIONS 

The prediction of yield and postyield behavior of 
glassy polymers, based on a microscopic model de- 
veloped by Chow,*' was made as follows: Using this 
model in respect to the basic expressions of nonlin- 
ear viscoelasticity, a constitutive equation is intro- 
duced, which can successfully describe the yield be- 
havior of the amorphous glassy state. The strain 
hardening has been modeled with the use of an in- 
ternal variable: the back stress tensor. 

Effects such as strain softening and strain hard- 
ening could be predicted with a good approximation 
between theory and experiment, as shown in Figure 
3. However, it must be noted that using the same 
set of parameters at  even lower strain rates a slight 
deviation concerning the strain softening is ob- 
served. In addition, the temperature effect on yield- 
ing was also described with the same analysis. In 
conclusion, nonlinear viscoelasticity can result to a 
satisfactory prediction of the entire yield behavior 
of glassy polymers, describing strain softening and 
strain hardening, including strain rate and temper- 
ature effect. 
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